
APPLICATION OF A FOKKER-PLANCK EQUATION TO DESCRIBE 

PROCESSES OF COAGULATION AND DISINTEGRATION OF 

DROPLETS IN A TURBULENT FLOW 

G. I. Kelbaliev, A. G. Rzaev, and A. A. Kasymov UDC 533.6 

An analytical solution to a Fokker-Planck equation is obtained which describes evolution o f  the droplet 
distribution function in a turbulent f low with account o f  their coagulation and disintegration. 

Turbulent flow of petroleum emulsions in tubes is characterized by complex physical phenomena of coagulation 
and disintegration of droplets, to which many works [1-3] are devoted, making it possible to establish specific features of 
these phenomena and the change in the mean dimension of the droplets. At the same time for practical computations our 
main interest is in the evolution of the droplet dimension distribution function with account of coagulation and disintegra- 
tion described by complex stochastic integrodifferential equations, because the indicated phenomena have a random discrete 
character. However, if the coagulation and disintegration processes are characterized by the mean-static change in dimen- 
sions of the droplets in a certain time interval, then application of the stochastic Fokker-Planck equation [4] is more 
practical and attractive. As noted in [3], continuous enlargement of droplets in a turbulent flow due to turbulent diffusion 

is described by the equation 

da 4 k D , ~  ._ rn~,  d t - .  al  (1) 
dt a a uo 

where mR = 4kDv,. At the same time, becoming larger, a droplet is specified by a large unstable surface, corresponding 
to the critical droplet dimension (which becomes unprofitable from an energetic viewpoint), and its disintegration [2] 

o c c u r s .  

Disintegration of droplets in a turbulent flow is a result of the action of the difference in dynamic heads, whose 
initiation sources are small-scale pulsations and surface tension. The droplet disintegration rate in the first approximation 
is assumed to be proportional to its dimension [1], i.e., da/dt - a n. Then the change in mean dimensions of the droplets 

due to their coagulation and disintegration may be given in the form 

d a  m R 

dt a 

where k~ is the disintegration coefficient. 
The solution of (2) under the prescribed initial condition 

and for n = 1.0 is represented by the function 

tending asymptotically as t --, ~ to 

a ( t )  = 

kRa n, 

t = O, a (t)l,=o = ao 

~// " m R e -'-'kRt) (l - -  + age-'~k#, 

(2) 

F ~m~" a= --,- -kR " (2a) 
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Fig. 1. Dependence of the mean droplet dimension on 
t ime for M = 3.0 (1), 2.0 (2), 1.5 (3), 0 (4), 0.5 (5), 0.2 
(6), 0 .05  (7). 

Thus, if a0 > a= = (mR/k~) 1/2, then the droplet disintegration process predominates; otherwise (when ao < a~.) 
we observe their coagulation and growth in dimensions. As is seen from Fig. 1, the equilibrium between the coagulation 
and disintegration phenomena of droplets takes place at M = mR/(kRa2o) = 1. Consequently, if M > 1, we have the 

coagulation region; in this case when M > > 1 (to which large values of the turbulent diffusion coefficient and concentra- 
tion of finely divided particles correspond) the growth of droplets dimensions occurs very intensely. When M < 1, the 
dimension of droplets decreases; naturally, in this region the disintegration phenomenon prevails. 

Obviously, parameter kR, characterizing the disintegration process of droplets in a turbulent flow, depends on the 

relation of the difference in dynamic heads (deforming a droplet) and the surface tension force, which is associated with 
the capillary pressure onset. Hence, if the capillary pressure exceeds the difference of the dynamic heads, then the droplet 
retains a stable shape. If we assume that intensive disintegration of droplets takes place, i.e., kR is large (M < <  1), then 
increase of droplets will lead to growth of the collision frequency and the rate of their coagulation. 

We may describe the behavior of a great number of droplets in two ways: a) by applying the Fokker-Planck 
equations; b) by using critical equations for each type of droplet consisting of a definite number of molecules. 

Therefore, it is quite possible to consider the droplet dimension as a continuously changing variable of Markov 
process and to use for its description the Fokker-Planck equation, which with account of (2) takes the form 

with the initial condition 

a P + B O~P (3) 
- -  ~ m : -  m ~ l k ~ ,  

Ot a �9 Oa 2 ' 

P (a ,  t)tt= 0 = P,(a) .  (3a) 

The solution of (3) allows us to construct the evolution of the droplet dimension distribution in a turbulent flow, during 
which the normalization condition 

P ( a ) d a  = t. 
o' 

is obeyed. To solve (3), we introduce the following expression: 

P (a, t) = q~ (t) q~ (a), (4) 

and substituting it into (3), by means of separation of variables, we obtain two ordinary equations: 

a q~(a) -]- B d2q~ 
dt ~- ~? '  - - k n  ~ a da 2 = txe~ (a). (5) 
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The solution of the first equation of (5) presents no difficulties: 

, (t) = Ce ~t. (6) 

Introducing new variables 0 = kRm/B = mR/B, y = kRa2/2B, 9 = Y~ after simple but cumbersome transforma- 
tions, we reduce the second equation of (5) to the form 

dZq~ ( O + l ) dO 
v - -  + v �9 = o.  (7)  

dg ~ 2 dg 2kn 

On the basis of Eqs. (6) and (7), it is possible to assume that (3) has the solution bounded at infinity, where (-M2kR) is a 

whole number [5], i.e., tL = 2kRn (n = 0, 1, 2 . . . .  ). Then the solution of (7) corresponding to eigenvalues tt is repre- 
sented by Laguerre polynomials of n-th degree and (0 - 1)/2 order, whereas the particular solution of (3) with account of 
(6) O(y) = ~py-~ is represented as 

' /ena2 ) LI~ ) (" kna~ I e-2hn ~t , P(a, t) = Ca ~ ( 2B ~. 2B ] 

where a = (0 - 1)/2 = (mR - B)/2B, L,(a) is a Laguerre function. The general solution of (3) may be given in the form 

leRa2 ~ ( lena" ) 

. = k 2B7 

Using the initial condition (3a) and the orthogonality condition of the Laguerre function 

( e-"aC%~ ~' (a) L~ ~' (a) da = 10, m 4= n, 
IF(1 + n ~ a ) n t ,  r e = n ,  

we determine the value for the constant coefficient C. in (8) in the form 

0 + 1  | 

9 ~'- ~ Po (a) L(.~l(k~aZ/2B) da 
(9) Cn = 0--I 

m~ '-5--_ P(n @ 0 4-----~1 ) n ! 2  

Thus, the solutions of Eqs. (8) and (9) make it possible to construct the dependence of the droplet dimension 
distribution function with account of their coagulation and disintegration on the duration of the action of the indicated 

physical phenomena, as well as on various parameters mR, kR and the initial distribution of droplets, characterizing the 

process. The asymptotic value of the distribution is obtained at t --, oo from (8), assuming that L(~)0(kRa2/2B ) = 1: 
@+i O+l 

) (ot ( / kRa2 2 kR 
P,(a,  t )=Coa ~  2B , C o = 2  ,, , = 2 ~ (!0) 

As follows from (10), for an infinite tube length a certain limiting distribution P=(a) is established, which is independent 

of the initial distribution. The mean limiting dimension of the droplets is written as ( 0 + 2) 

= , a z da = C O o-t-2 a aP| t) d a = C o  a ~ 2B 
0 0 ( k n ) 2  

2 \  2B , 
Taking into consideration the value of Co from (10), we finally obtain 

' / 9 \ 

r ) 
| , V 2kRB " 

We introduce the relation 

a o  --  F ' /  mR " mR " 

Hence, the relation a=/ao - M v2 defines the predominance of coagulation or disintegration of droplets in the turbulent 

flow. 
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Proceeding from (10), we note that the limiting droplet distribution with respect to its form is close to the known 
empirical Rosen-Rainier relation, although depending on the parameter value, 0 may be the Rayleigh distribution (0 = 1), 
the Maxwell distribution (0 = 2), etc. 

We shall determine the coordinates for the maximal value of the limiting distribution from the condition 

( k R a Z )  o k~ a ( kRa~' 
OP| t) _ CoOaO._t exp - - ~  - -Coa ---ff-exp ) = O. 

Oa 2B 2B , 

Reducing the parameters, being not equal to zero, we have the expression 

a = (rnRlkR) ~/2, 

which coincides with (2a). 
Consequently, the maximal distribution value is shifted in the direction of smaller dimensions with decreasing 

mR/k R and in the direction of larger dimensions of droplets with increasing mR/k R. As follows from this expression, mR and 
kR are related through a=. It is possible to calculate the value of mR by the formula mR = 4kDx~p, where the turbulent 
diffusion coefficient of particles DT is determined from formulas given in [6]. Knowing the experimental value of a=, it is 

easy to obtain the estimate k R = mg/a2=. 

NOTATION 

a, droplet diameter; B, coefficient; DT, turbulent diffusion coefficient; k, collision efficiency constant; l, length; 

P(a, t), droplet distribution function; u0, mean flow rate; tz,, eigenvalues; ~, volumetric droplet fraction in a flow. 
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